Administered by:
University of Cambridge
Two independent pathways for corrosion of elements are hydrolysis and oxidation by oxygen. The combination of water and oxygen is even more corrosive. Virtually all elements burn in an atmosphere of oxygen or an oxygen-rich environment. In the presence of water and oxygen (or simply air), some elements- sodium-react rapidly, to give the hydroxides. In part, for this reason, alkali and alkaline earth metals are not found in nature in their metallic, i.e., native, form. Cesium is so reactive with oxygen that it is used as a getter in vacuum tubes, and solutions of potassium and sodium, so-called NaK are used to deoxygenate and dehydrate some organic solvents. The surface of most metals consists of oxides and hydroxides in the presence of air. A well-known example is aluminium foil, which is coated with a thin film of aluminium oxide that passivates the metal, slowing further corrosion. The aluminum oxide layer can be built to greater thickness by the process of electrolytic anodizing. Though solid magnesium and aluminum react slowly with oxygen at STP-they, like most metals, burn in air, generating very high temperatures. Finely grained powders of most metals can be dangerously explosive in air. Consequently, they are often used in solid-fuel rockets.

Oxides have a range of different structures, from individual molecules to polymeric and crystalline structures. At standard conditions, oxides may range from solids to gases.

Oxides typically react with acids or bases, sometimes both. Those reacting only with acids are labeled basic oxides. Those reacting only by bases are called "acidic oxides". Oxides that react with both are amphoteric. Metals tend to form basic oxides, non-metals tend to form acidic oxides, and amphoteric oxides are formed by elements near the boundary between metals and non-metals (metalloids). This reactivity is the basis of many practical processes, such as the extraction of some metals from their ores in the process called hydrometallurgy.

The reductive dissolution of a transition metal oxide occurs when dissolution is coupled to a redox event. For example, ferric oxides dissolve in the presence of reductants, which can include organic compounds. or bacteria Reductive dissolution is integral to geochemical phenomena such as the iron cycle.

Reductive dissolution does not necessarily occur at the site where the reductant adsorbs. Instead, the added electron travel through the particle, causing reductive dissolution elsewhere on the particle.